
Fast Construction of a Word↔Number Index
for Large Data

Miloš Jakub́ıček, Pavel Rychlý, Pavel Šmerk

Natural Language Processing Centre
Faculty of Informatics
Masaryk University

7. 12. 2013

Šmerk et al. (NLPC FI MU) Construction of a Word↔Number Index 7. 12. 2013 1 / 7

Introduction

• Inspiration: Aleš Horák @ 1st NLP Centre seminar :-)
• (but we still did not compare Manatee and some sql DB)

• Problem: indexes for large text corpora (billions of tokens)
• Current solution: .lex, .lex.idx and .lex.srt files

• .lex: null-terminated strings, in the order of appearance in corpus
• .lex.idx: 4B offsets of words in .lex
• .lex.srt: 4B indices (positions in .lex.idx) sorted alphabetically
• id2str: 2 accesses to the memory
• str2id: 3 * ln2 |lexicon| accesses to the memory

• New solution: HAT-trie + (reimplemented) Daciuk’s fsa tools
• HAT-trie: cache-conscious, combines trie + hash, allows sorted access

• for indexing natural language strings, it is among the best solutions
regarding both time and space

• Daciuk: minimal DAFSA for perfect hashing

Šmerk et al. (NLPC FI MU) Construction of a Word↔Number Index 7. 12. 2013 2 / 7

Data sets used in the experiments

data set size words unique size language
100M 1148MB 110M 1660 k 31MB Tajik
1000M 5161MB 957M 1366 k 14MB French
10000M 69010MB 12967M 27892 k 384MB English

• three sets of corpus data: they differ not only in size
• Tajik uses Cyrillic ⇒ words are two times longer only due to encoding
• French corpus (OPUS project): mostly legal texts ⇒ limited vocabulary

Šmerk et al. (NLPC FI MU) Construction of a Word↔Number Index 7. 12. 2013 3 / 7

Comparison of encodevert and hat-trie

encodevert hat-trie
data set time memory time memory size
100M 3:11m 0.44GB 26.5 s 0.06GB 44MB
1000M 23:01m 0.40GB 2:21m 0.04GB 25MB
10000M 7:38 h 0.98GB 44:37m 0.78GB 607MB

encodevert hat-trie
data set local fair fair
100M 3:27m 1:25m 32.6 s
1000M 26:10m 6:26m 3:09m
10000M 9:21 h 4:02 h 1:02 h

• the table from the paper have revealed to be unfair to encodevert
• local data on local hdd, but probably more used
• fair times: both apps produces the same set of files

• in fact, this is still unfair, but now to hat-trie
• ⇒ whole applications have to be tested

Šmerk et al. (NLPC FI MU) Construction of a Word↔Number Index 7. 12. 2013 4 / 7

Reduction of the size of data

encodevert hat-trie
data set time memory time memory size
100M 3:11m 0.44GB 26.5 s 0.06GB 44MB
1000M 23:01m 0.40GB 2:21m 0.04GB 25MB
10000M 7:38 h 0.98GB 44:37m 0.78GB 607MB

fsa_ubuild hat + new fsa
data set time memory time memory size
100M failed 31.7 s 0.09GB 15MB
1000M 15:48m 0.11GB 2:34m 0.06GB 11MB
10000M 7:44 h 31.01GB 1:08 h 1.47GB 363MB

• for very large corpora the files can consume a lot of memory
• with Daciuk’s fsa tools we have built automata for perfect hashing

• fsa_ubuild is an original Daciuk’s implementation (unsorted data)
• hat + new fsa is an reimplementation with HAT-trie as presort

• (experiments from the two tables were run on different hardware)
Šmerk et al. (NLPC FI MU) Construction of a Word↔Number Index 7. 12. 2013 5 / 7

HAT-trie based sort + fsa overperforms fsa_ubuild

fsa_ubuild hat + new fsa
data set time memory time memory size
100M failed 31.7 s 0.09GB 15MB
1000M 15:48m 0.11GB 2:34m 0.06GB 11MB
10000M 7:44 h 31.01GB 1:08 h 1.47GB 363MB

hat-trie sort fsa_build new fsa
data set time memory time memory time memory
100M 28.4 s 0.06GB 12.4 s 0.21GB 4.2 s 0.03GB
1000M 2:51m 0.04GB 5.6 s 0.11GB 1.8 s 0.03GB
10000M 59:16m 0.77GB 35:15m 27.07GB 9:36m 0.71GB

• the second table compares fsa construction from sorted data
• ⇒ having such an effective sort algorithm, to sort data and then use
the algorithm for sorted data is always better than fsa_ubuild

• ⇒ to reduce the used memory it would better to flush sorted data to
hard disk before fsa construction, as the time penalty is minimal

Šmerk et al. (NLPC FI MU) Construction of a Word↔Number Index 7. 12. 2013 6 / 7

Future Work

• it is a work in progress, even the measured times are biased
• we want to

• fine tune hat-trie (we have used default settings)
• further reduce

• compile space: fsa can be built directly in memory
• compile time: hash for “registered” nodes
• run space: VLEncoded information, relative adresses, UTF-8, . . .
• run time: smaller run space, numbers in arcs

• run experiments on a hdd not shared with other processes

Šmerk et al. (NLPC FI MU) Construction of a Word↔Number Index 7. 12. 2013 7 / 7

