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Šmerk et al. (NLPC FI MU) Construction of a Word↔Number Index 7. 12. 2013 1 / 7



Introduction

• Inspiration: Aleš Horák @ 1st NLP Centre seminar :-)
• (but we still did not compare Manatee and some sql DB)

• Problem: indexes for large text corpora (billions of tokens)
• Current solution: .lex, .lex.idx and .lex.srt files

• .lex: null-terminated strings, in the order of appearance in corpus
• .lex.idx: 4B offsets of words in .lex
• .lex.srt: 4B indices (positions in .lex.idx) sorted alphabetically
• id2str: 2 accesses to the memory
• str2id: 3 * ln2 |lexicon| accesses to the memory

• New solution: HAT-trie + (reimplemented) Daciuk’s fsa tools
• HAT-trie: cache-conscious, combines trie + hash, allows sorted access

• for indexing natural language strings, it is among the best solutions
regarding both time and space

• Daciuk: minimal DAFSA for perfect hashing
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Data sets used in the experiments

data set size words unique size language
100M 1148MB 110M 1660 k 31MB Tajik
1000M 5161MB 957M 1366 k 14MB French
10000M 69010MB 12967M 27892 k 384MB English

• three sets of corpus data: they differ not only in size
• Tajik uses Cyrillic ⇒ words are two times longer only due to encoding
• French corpus (OPUS project): mostly legal texts ⇒ limited vocabulary
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Comparison of encodevert and hat-trie

encodevert hat-trie
data set time memory time memory size
100M 3:11m 0.44GB 26.5 s 0.06GB 44MB
1000M 23:01m 0.40GB 2:21m 0.04GB 25MB
10000M 7:38 h 0.98GB 44:37m 0.78GB 607MB

encodevert hat-trie
data set local fair fair
100M 3:27m 1:25m 32.6 s
1000M 26:10m 6:26m 3:09m
10000M 9:21 h 4:02 h 1:02 h

• the table from the paper have revealed to be unfair to encodevert
• local data on local hdd, but probably more used
• fair times: both apps produces the same set of files

• in fact, this is still unfair, but now to hat-trie
• ⇒ whole applications have to be tested
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Reduction of the size of data

encodevert hat-trie
data set time memory time memory size
100M 3:11m 0.44GB 26.5 s 0.06GB 44MB
1000M 23:01m 0.40GB 2:21m 0.04GB 25MB
10000M 7:38 h 0.98GB 44:37m 0.78GB 607MB

fsa_ubuild hat + new fsa
data set time memory time memory size
100M failed 31.7 s 0.09GB 15MB
1000M 15:48m 0.11GB 2:34m 0.06GB 11MB
10000M 7:44 h 31.01GB 1:08 h 1.47GB 363MB

• for very large corpora the files can consume a lot of memory
• with Daciuk’s fsa tools we have built automata for perfect hashing

• fsa_ubuild is an original Daciuk’s implementation (unsorted data)
• hat + new fsa is an reimplementation with HAT-trie as presort

• (experiments from the two tables were run on different hardware)
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HAT-trie based sort + fsa overperforms fsa_ubuild

fsa_ubuild hat + new fsa
data set time memory time memory size
100M failed 31.7 s 0.09GB 15MB
1000M 15:48m 0.11GB 2:34m 0.06GB 11MB
10000M 7:44 h 31.01GB 1:08 h 1.47GB 363MB

hat-trie sort fsa_build new fsa
data set time memory time memory time memory
100M 28.4 s 0.06GB 12.4 s 0.21GB 4.2 s 0.03GB
1000M 2:51m 0.04GB 5.6 s 0.11GB 1.8 s 0.03GB
10000M 59:16m 0.77GB 35:15m 27.07GB 9:36m 0.71GB

• the second table compares fsa construction from sorted data
• ⇒ having such an effective sort algorithm, to sort data and then use
the algorithm for sorted data is always better than fsa_ubuild

• ⇒ to reduce the used memory it would better to flush sorted data to
hard disk before fsa construction, as the time penalty is minimal
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Future Work

• it is a work in progress, even the measured times are biased
• we want to

• fine tune hat-trie (we have used default settings)
• further reduce

• compile space: fsa can be built directly in memory
• compile time: hash for “registered” nodes
• run space: VLEncoded information, relative adresses, UTF-8, . . .
• run time: smaller run space, numbers in arcs

• run experiments on a hdd not shared with other processes
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